
Advanced
Graphics

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

“The Shader knows…”

What is… the shader?

World space

Viewing space

3D screen space

2D display space

Local space

Last lecture…

World space

Viewing space

3D screen space

Process vertices

Local space

Clipping, projection, backface culling

Process pixels

2D display space – plot pixels

Closer to the truth (but still a
terrible oversimplification)

What is… the shader?

World space

3D screen space

2D display space

Local space

Last lecture…

World space

Viewing space

3D screen space

Local space

Clipping, projection, backface culling

2D display space – plot pixels

Closer to the truth (but still a
terrible oversimplification)

Process vertices

Ex: computing shading color
per vertex; transforming vertex
position; transforming texture
co-ordinates

Process pixels
Ex: interpolating texture
coordinates across the polygon;
interpolating the normal for
specular lighting; textured
normal-mapping

“Wouldn’t it
be great if
the user
could install
their own
code into the
hardware to
choose these
effects?”

Viewing space

OpenGL programmable processors (not to scale)

The OpenGL 4.3 pipeline, circa 2012

What are we targeting?

OpenGL shaders give the
user control over each
vertex and each fragment
(each pixel or partial
pixel) interpolated
between vertices.

After vertices are processed, polygons are rasterized. During
rasterization, values like position, color, depth, and others are
interpolated across the polygon. The interpolated values are passed to
each pixel fragment.

Think parallel

Shaders are compiled from within your code
● They used to be written in assembler
● Today they’re written in high-level languages

They execute on the GPU
GPUs typically have multiple processing units
That means that multiple shaders execute in parallel
● We’re moving away from the purely-linear flow of early “C”

programming models

Shader gallery I

Above: Demo of Microsoft’s XNA game platform
Right: Product demos by nvidia (top) and ATI (bottom)

There are several popular languages for
describing shaders, such as:

● HLSL, the High Level Shading Language
● Author: Microsoft
● DirectX 8+

● Cg
● Author: nvidia

● GLSL, the OpenGL Shading Language
● Author: the Khronos Group, a self-sponsored group of

industry affiliates (ATI, 3DLabs, etc)

Least advanced; most
portable and supported;
topic of this lecture.

What’re we talking here?

What can you control?

Per vertex:
● Vertex transformation
● Normal transformation

and normalization
● Texture coordinate

generation
● Texture coordinate

transformation
● Lighting
● Color material application

Per fragment (pixel):
● Operations on interpolated

values
● Texture access
● Texture application
● Fog
● Color summation
● Optionally:

● Pixel zoom
● Scale and bias
● Color table lookup
● Convolution

Vertex processor – inputs and outputs

Color
Normal
Position
Texture coord
etc…

Texture data

Modelview matrix
Material
Lighting
etc…

Custom variables

gl_Position

Custom variables

Vertex
Processor

Per-vertex attributes

Fragment processor – inputs and outputs

Color
Texture coords
Front facing

Texture data

Modelview matrix
Material
Lighting
etc…

Custom variables

Fragment color
Fragment depth

FragmentP
rocessor

gl_Position

How do the shaders communicate?

There are three types of shader parameter in
GLSL:
uniform parameters
● Set throughout execution
● Ex: surface color

in parameters
● Inputs per vertex and per fragment
● Ex: local tangent

out parameters
● Passed from vertex processor to fragment

processor, and out from fragment processor
● Ex: transformed normal Fragment

Processor

Vertex
Processor

in

Uniform
params

out

in

Shader gallery II

Above: Kevin Boulanger (PhD thesis,
“Real-Time Realistic Rendering of Nature
Scenes with Dynamic Lighting”, 2005)

Above: Ben Cloward (“Car paint shader”)

Shader sample one – ambient lighting
#version 330

uniform mat4 mvp;
in vec4 vPosition;

void main() {
 gl_Position =
 mvp * vPosition;
}

#version 330

out vec4 color;

void main() {
 color =
 vec4(0.2, 0.6, 0.8, 1);
}

// Vertex Shader // Fragment Shader

Shader sample – ambient lighting

Shader sample – ambient lighting

Notice the C-style syntax
void main() { … }

The vertex shader uses two inputs, one four-element vec4
and one four-by-four mat4 matrix; and one standard output,
gl_Position.
The line

gl_Position = mvp * gl_Vertex;

applies our model-view-projection matrix to calculate the
correct vertex position in perspective coordinates.
The fragment shader applies basic ambient lighting, setting
its one output, color, to a fixed value.

Shader sample – Phong shading
#version 330

uniform mat4 modelToScreen;
uniform mat3 normalToWorld;

in vec4 vPosition;
in vec3 vNormal;

out vec3 normal;

void main() {
 gl_Position =
 modelToScreen * vPosition;
 normal = normalize(
 normalToWorld * vNormal);
}

#version 330

uniform vec3 lightDirection;

in vec3 normal;

out vec4 color;

vec3 blue = vec3(0.2, 0.6, 0.8);

void main() {
 vec3 n = normalize(normal);
 float diff = clamp(dot(n,
 lightDirection), 0.2, 1.0);
 color = vec4(blue * diff, 1.0);
}

// Vertex Shader // Fragment Shader

Shader sample – Phong shading

Shader sample – Phong shading

This examples uses in and out parameters to pass
info from the vertex shader to the fragment
shader, and uniform parameters to pass data from
OpenGL to all shaders.

● The parameters Norm and ToLight are automatically
linearly interpolated between vertices across every
polygon.

● Each fragment shader sees the surface normal at that
exact point on the surface.

● The exact illumination is computed locally.

Shader sample – Phong shading
Notice the different matrix transforms used in this example:

gl_Position = modelToScreen * vPosition;
Norm = normalToWorld * vNormal;

We defined different transforms because we needed different effects.
● modelToScreen transforms a vertex from local coordinates to

perspective coordinates for display
● normalToWorld transforms a normal from local coordinates to

world coordinates using the inverse of the transpose of the upper 3x3
submatrix of the model-view transform.

You’ll need to always be aware of which coordinate space you need to
transform from and to.

GLSL – design goals

GLSL was designed with the following in mind:
● Work well with OpenGL

● Shaders should be optional extras, not required.
● Fit into the design model of “set the state first, then render the data in

the context of the state”
● Support upcoming flexibility
● Be hardware-independent

● The GLSL folks, as a broad consortium, are far more invested in
hardware-independence than, say, nvidia.

● That said, they’ve only kinda nailed it: I get different compiler
behavior and different crash-handling between my high-end home
nVidia chip and my laptop Intel x3100.

● Support inherent parallelization
● Keep it streamlined, small and simple

GLSL

The language design in GLSL is strongly based on
ANSI C, with some C++ added.

● There is a preprocessor--#define, etc!
● Basic types: int, float, bool

● No double-precision float
● Vectors and matrices are standard: vec2, mat2 = 2x2; vec3,
mat3 = 3x3; vec4, mat4 = 4x4

● Texture samplers: sampler1D, sampler2D, etc are used to
sample multidemensional textures

● New instances are built with constructors, a la C++
● Functions can be declared before they are defined, and

operator overloading is supported.

GLSL

Some differences from C/C++:
● No pointers, strings, chars; no unions, enums; no bytes, shorts,

longs; no unsigned. No switch() statements.
● There is no implicit casting (type promotion):

float foo = 1;
fails because you can’t implicitly cast int to float.

● Explicit type casts are done by constructor:
vec3 foo = vec3(1.0, 2.0, 3.0);
vec2 bar = vec2(foo); // Drops foo.z

Function parameters are labeled as in, out, or uniform.
● Functions are called by value-return, meaning that values are

copied into and out of parameters at the start and end of calls.

Program

The OpenGL GLSL API
To install and use a shader in OpenGL:
● Create one or more empty shader objects with

glCreateShader.
● Load source code, in text, into the shader with

glShaderSource.
● Compile the shader with glCompileShader.

● The compiler cannot detect every program that would cause a
crash.
(And if you can prove otherwise, see me after class.)

● Create an empty program object with glCreateProgram.
● Bind your shaders to the program with glAttachShader.
● Link the program (ahh, the ghost of C!) with

glLinkProgram.
● Register your program for use with glUseProgram.

Vertex
shader

Fragment
shader

Compiler

OpenGL

Linker

Tips for debugging OpenGL / GLSL

● Use glGetError to check the current state of OpenGL:
 int error = gl.glGetError();

 if (error != 0) {

 throw new RuntimeException("OpenGL Error " + error
 + ": " + (new GLU()).gluErrorString(error));

 }

● Use GL_VERSION to check what version of GL your
graphics chip is capable of running:

 gl.glGetString(GL.GL_VERSION)

Tips for debugging OpenGL / GLSL

● Use glGetShaderInfoLog to validate a compiled shader
int[] length = new int[1];

byte[] buffer = new byte[BUFFER_SIZE];

gl.glGetShaderInfoLog(shader, BUFFER_SIZE, length, 0,
buffer, 0);

int logLength = length[0];

if (logLength > 1) {

 String infolog = new String(buffer);

 if (infolog.trim().compareTo("No errors.") != 0) {

 throw new RuntimeException(shader + ": " + infolog);

 }

}

Tips for debugging OpenGL / GLSL

● Use glValidateProgram and glGetProgramInfoLog to
validate a compiled and linked GLSL program

gl.glValidateProgram(program);
int[] length = new int[1];
byte[] buffer = new byte[BUFFER_SIZE];
gl.glGetProgramInfoLog(
 program, BUFFER_SIZE, length, 0, buffer, 0);
if (length[0] > 1) {
 String infolog = new String(buffer).trim();
 if (!infolog.equalsIgnoreCase("No errors.")) {
 throw new RuntimeException(
 "Program: " + program + ": " + infolog);
 }
}

Shader sample –
Gooch shading

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd.

uniform mat4 modelToCamera;
uniform mat4 modelToScreen;
uniform mat3 normalToCamera;

vec3 LightPosition = vec3(0, 10, 4);

in vec4 vPosition;
in vec3 vNormal;

out float NdotL;
out vec3 ReflectVec;
out vec3 ViewVec;

void main()
{
 vec3 ecPos = vec3(modelToCamera * vPosition);
 vec3 tnorm = normalize(normalToCamera * vNormal);
 vec3 lightVec = normalize(LightPosition - ecPos);
 ReflectVec = normalize(reflect(-lightVec, tnorm));
 ViewVec = normalize(-ecPos);
 NdotL = (dot(lightVec, tnorm) + 1.0) * 0.5;
 gl_Position = modelToScreen * vPosition;
}

#version 330

// Original author: Randi Rost
// Copyright (c) 2002-2005 3Dlabs Inc. Ltd.

uniform vec3 vColor;

float DiffuseCool = 0.3;
float DiffuseWarm = 0.3;
vec3 Cool = vec3(0, 0, 0.6);
vec3 Warm = vec3(0.6, 0, 0);

in float NdotL;
in vec3 ReflectVec;
in vec3 ViewVec;

out vec4 result;

void main()
{
 vec3 kcool = min(Cool + DiffuseCool * vColor, 1.0);
 vec3 kwarm = min(Warm + DiffuseWarm * vColor, 1.0);
 vec3 kfinal = mix(kcool, kwarm, NdotL);

 vec3 nRefl = normalize(ReflectVec);
 vec3 nview = normalize(ViewVec);
 float spec = pow(max(dot(nRefl, nview), 0.0), 32.0);

 if (gl_FrontFacing) {
 result = vec4(min(kfinal + spec, 1.0), 1.0);
 } else {
 result = vec4(0, 0, 0, 1);
 }
}

Shader sample – Gooch shading

Shader sample – Gooch shading

Image source: “A
Non-Photorealistic
Lighting Model For
Automatic Technical
Illustration”, Gooch,
Gooch, Shirley and
Cohen (1998).
Compare the Gooch
shader, above, to the
Phong shader (right).

Gooch shading is an example of non-realistic
rendering. It was designed by Amy and Bruce
Gooch to replace photorealistic lighting with a
lighting model that highlights structural and
contextual data.
● They use the term of the conventional lighting

equation to choose a map between ‘cool’ and ‘warm’
colors.

○ This is in contrast to conventional illumination where
lighting simply scales the underlying surface color.

● This, combined with edge-highlighting through a
second renderer pass, creates models which look more
like engineering schematic diagrams.

Shader sample – Gooch shading

In the vertex shader source, notice the use of the built-in ability to
distinguish front faces from back faces:

if (gl_FrontFacing) {...
This supports distinguishing front faces (which should be shaded

smoothly) from the edges of back faces (which will be drawn in heavy
black.)
In the fragment shader source, this is used to choose the weighted color
by clipping with the a component:

vec3 kfinal = mix(kcool, kwarm, NdotL);
Here mix() is a GLSL method which returns the linear interpolation
between kcool and kwarm. The weighting factor is NdotL, the
lighting value.

Demo!

Recap
● Shaders give a powerful, extensible mechanism for programming the vertex and pixel

processing stages of the GPU pipeline.
● GLSL is a portable, multiplatform C-like language which is compiled at run-time and

linked into an executable shader program.
● Shaders can be used for a long list of effects, from procedural geometry and non-

photorealistic lighting to advanced textures, fog, shadows, raycasting, and visual
effects; in fact, many of the topics covered in this course!

(The first 21 images returned by Google Image Search for “shaders”.)

